References¶
[Denville2002] | Deville, M.O. and P.F. Fischer and E.H. Mund. High-order methods for incompressible fluid flow. Cambridge University Press, 2002. doi.org/10.1017/CBO9780511546792 |
[Ho1989] | Ho, L.W. A Legendre spectral element method for simulation of incompressible unsteady viscous free-surface flows. Ph.D. thesis, Massachusetts Institute of Technology, 1989. |
[Maday1989] | Maday, Y. and A.T. Patera. Spectral element methods for the Navier-Stokes equations. In State-of-the-Art Surveys in Computational Mechanics, pages 71–143. ASME, New York, 1989. |
[Orszag1980] | Orszag, S.A. “Spectral methods for problems in complex geometry.” J. Comput. Phys. 37:70–92, 1980. |
[Patera1984] | Patera, A.T. “A spectral element method for fluid dynamics : laminar flow in a channel expansion.” J. Comput. Phys. 54:468–488, 1984. doi.org/10.1016/0021-9991(84)90128-1 |
[Mellen2000] | Mellen, C. P., Fröhlich, J., Rodi, W. “Large-eddy simulation of the flow over periodic hills.” 16th IMACS World Congress, Lausanne, Switzerland. |
[Foroozani2021] | Foroozani, N., Krasnov, D., Schumacher, J., “Turbulent convection for different thermal boundary conditions at the plates”, J. Fluid. Mech., 907, A27:1–22, 2021. doi.org/10.1017/jfm.2020.830 |
[Fischer2001] | Fischer, P., Mullen, J., “Filter-based stabilization of spectral elementl methods”, Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 332, 3:265–270, 2001. doi.org/10.1016/S0764-4442(00)01763-8 |
[Stolz2005] | Stolz, S., Schlatter, P., and Kleiser, L., “High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow”, Physics of Fluids, 17, 065103, 2005. doi.org/10.1063/1.1923048 |
[Stolz2001] | Stolz, S., Adams, N. A. and Kleiser, L., “An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows”, Physics of Fluids, 13, no. 4, pp. 997–1015, 2005. doi.org/10.1063/1.1350896 |
[Schlatter2006] | Schlatter, P., Stolz, S., and Kleiser, L., “Analysis of the SGS energy budget for deconvolution- and relaxation-based models in channel flow”, in Direct and Large-Eddy Simulation VI, pp. 135–142, Springer, Dordrecht, 2006. doi.org/10.1007/978-1-4020-5152-2_15 |
[Wilcox2008] | Wilcox, David C. “Formulation of the k-ω turbulence model revisited.” AIAA journal 46, no. 11 (2008): 2823-2838. doi.org/10.2514/1.36541 |
[Speziale1992] | Speziale, Charles G., Ridha Abid, and E. Clay Anderson. “Critical evaluation of two-equation models for near-wall turbulence.” AIAA journal 30, no. 2 (1992): 324-331. doi.org/10.2514/3.10922 |
[Tombo2018] | Tomboulides, A., S. M. Aithal, P. F. Fischer, E. Merzari, A. V. Obabko, and D. R. Shaver. “A novel numerical treatment of the near-wall regions in the k−ω class of RANS models.” International Journal of Heat and Fluid Flow 72 (2018): 186-199. doi.org/10.1016/j.ijheatfluidflow.2018.05.017 |
[Kok2000] | Kok, Johannes Christiaan, and Stephanus Petrus Spekreijse. “Efficient and accurate implementation of the k-omega turbulence model in the NLR multi-block Navier-Stokes system.” tech. rep. NLR-RP-2000-144, National Aerospace Laboratory NLR, The Netherlands (2000). http://hdl.handle.net/10921/822 |
[Grandy2007] | Grandy, C. et al. “Advanced Burner Reactor 1000MWth Reference Concept.” tech. rep. ANL-ABR-4, Argonne National Laboratory, Lemont, IL (2007). doi.org/10.2172/946035 |
[Yoon2021] | Yoon, S.J., Shaver, D. and Heidet, F. “CFD Evaluation of Local Pressure Losses in a Sodium-cooled Fast Reactor Fuel Bundle.” Proc. of. 2021 ANS Virtual Annual Meeting. (2021) |